Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Cells ; 10(10)2021 10 15.
Article in English | MEDLINE | ID: covidwho-1470800

ABSTRACT

Pulmonary epithelial cells are widely considered to be the first line of defence in the lung and are responsible for coordinating the innate immune response to injury and subsequent repair. Consequently, epithelial cells communicate with multiple cell types including immune cells and fibroblasts to promote acute inflammation and normal wound healing in response to damage. However, aberrant epithelial cell death and damage are hallmarks of pulmonary disease, with necrotic cell death and cellular senescence contributing to disease pathogenesis in numerous respiratory diseases such as idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD) and coronavirus disease (COVID)-19. In this review, we summarise the literature that demonstrates that epithelial damage plays a pivotal role in the dysregulation of the immune response leading to tissue destruction and abnormal remodelling in several chronic diseases. Specifically, we highlight the role of epithelial-derived damage-associated molecular patterns (DAMPs) and senescence in shaping the immune response and assess their contribution to inflammatory and fibrotic signalling pathways in the lung.


Subject(s)
COVID-19/immunology , Epithelium/immunology , Idiopathic Pulmonary Fibrosis/immunology , Lung/immunology , Alarmins , Animals , Cellular Senescence , Coculture Techniques , Epithelial Cells/cytology , Epithelial Cells/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Fibrosis/metabolism , Humans , Idiopathic Pulmonary Fibrosis/metabolism , Immunity , Inflammation/metabolism , Ligands , Necroptosis , Necrosis/pathology , Pulmonary Disease, Chronic Obstructive , SARS-CoV-2 , Signal Transduction
2.
Cell Rep ; 35(5): 109055, 2021 05 04.
Article in English | MEDLINE | ID: covidwho-1179291

ABSTRACT

Coronavirus disease 2019 (COVID-19) is the latest respiratory pandemic caused by severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2). Although infection initiates in the proximal airways, severe and sometimes fatal symptoms of the disease are caused by infection of the alveolar type 2 (AT2) cells of the distal lung and associated inflammation. In this study, we develop primary human lung epithelial infection models to understand initial responses of proximal and distal lung epithelium to SARS-CoV-2 infection. Differentiated air-liquid interface (ALI) cultures of proximal airway epithelium and alveosphere cultures of distal lung AT2 cells are readily infected by SARS-CoV-2, leading to an epithelial cell-autonomous proinflammatory response with increased expression of interferon signaling genes. Studies to validate the efficacy of selected candidate COVID-19 drugs confirm that remdesivir strongly suppresses viral infection/replication. We provide a relevant platform for study of COVID-19 pathobiology and for rapid drug screening against SARS-CoV-2 and emergent respiratory pathogens.


Subject(s)
Alveolar Epithelial Cells/virology , COVID-19 Drug Treatment , COVID-19/pathology , Lung/virology , SARS-CoV-2/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Adult , Aged , Alanine/analogs & derivatives , Alanine/pharmacology , Alveolar Epithelial Cells/metabolism , COVID-19/metabolism , COVID-19/virology , Child, Preschool , Drug Discovery/methods , Epithelial Cells/virology , Epithelium/metabolism , Epithelium/virology , Female , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Lung/pathology , Male , Middle Aged , Models, Biological , Primary Cell Culture , Respiratory Mucosa/virology , SARS-CoV-2/physiology , Virus Replication/drug effects
3.
Int J Mol Sci ; 21(22)2020 Nov 10.
Article in English | MEDLINE | ID: covidwho-917002

ABSTRACT

Pro-inflammatory cytokines like interleukin-1ß (IL-1ß) are upregulated during early responses to tissue damage and are expected to transiently compromise the mechanical microenvironment. Fibroblasts are key regulators of tissue mechanics in the lungs and other organs. However, the effects of IL-1ß on fibroblast mechanics and functions remain unclear. Here we treated human pulmonary fibroblasts from control donors with IL-1ß and used Atomic Force Microscopy to unveil that IL-1ß significantly reduces the stiffness of fibroblasts concomitantly with a downregulation of filamentous actin (F-actin) and alpha-smooth muscle (α-SMA). Likewise, COL1A1 mRNA was reduced, whereas that of collagenases MMP1 and MMP2 were upregulated, favoring a reduction of type-I collagen. These mechanobiology changes were functionally associated with reduced proliferation and enhanced migration upon IL-1ß stimulation, which could facilitate lung repair by drawing fibroblasts to sites of tissue damage. Our observations reveal that IL-1ß may reduce local tissue rigidity by acting both intracellularly and extracellularly through the downregulation of fibroblast contractility and type I collagen deposition, respectively. These IL-1ß-dependent mechanical effects may enhance lung repair further by locally increasing pulmonary tissue compliance to preserve normal lung distension and function. Moreover, our results support that IL-1ß provides innate anti-fibrotic protection that may be relevant during the early stages of lung repair.


Subject(s)
Interleukin-1beta/physiology , Lung/physiology , Actins/metabolism , Adolescent , Adult , Biomechanical Phenomena , Cell Movement/drug effects , Cell Movement/physiology , Cell Proliferation/drug effects , Cell Proliferation/physiology , Cells, Cultured , Collagen Type I/genetics , Collagen Type I/metabolism , Collagen Type I, alpha 1 Chain , Collagen Type III/genetics , Collagen Type III/metabolism , Cyclooxygenase 2/metabolism , Elasticity/drug effects , Elasticity/physiology , Female , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/physiology , Humans , Interleukin-1beta/pharmacology , Lung/cytology , Lung/drug effects , Male , Microscopy, Atomic Force , RNA, Messenger/genetics , RNA, Messenger/metabolism , Regeneration/genetics , Regeneration/physiology , Wound Healing/drug effects , Wound Healing/genetics , Wound Healing/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL